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1. Introduction

Recently, there has been increasing interest in the visualization of three

dimensional data sets [VISC87, FREN89]. This problem of volumetric visualization

has two main approaches. The older approach uses graphical vectors and polygons to

visualization scalar or vector fields in space. A newer method of "direct volume

rendering" instead uses "voxels" ( three-dimensional analogs of pixels), applies analogs

of image processing transformations to them, and then renders the voxels directly to a

frame buffer with no intermediate geometric stage.

Direct volume visualization is a 3-D analog to 2-D image processing and has

more in common which image processing techniques than with traditional graphical

techniques using vectors and polygons. There are two main approaches [UPSO88,

WEST89] The first approach is a generalization of ray-casting which maps the image

plane (screen) back on to the data (backward mapping, e.g. [LEVO88]). The other method

(forward mapping) processes the the voxels and accumulates them into a frame buffer

(e.g. [DREB88]).

In current direct volume rendering methods, nonuniform curvilinear grids and

perspective transformations are handled with difficulty or not at all. While these

limitations are not severe for many types of data (e.g. seismic or medical imagery) they

are significant for computational fluid dynamics (CFD). CFD datasets are typically

based on body-conformlng curvilinear coordinates and encompass several decades of

length scales. The extension of direct volume rendering techniques to CFD datasets is

still an open problem.

The present paper is concemed with the first approach, using vectors and

polygons, and investigates the extent to which some of the valuable features of direct

volume rendering can be approximated by more traditional techniques. At present,

vectors and polygons can be rendered in hardware at greater speed thanvoxels.

Traditional volume rendering algorithms at present are too slow for interactive

rendition. Moreover, the methods described here work naturally on curvilinear grids

with varying length scales. Finally, the geometry of vectors and polygons make it easier

to obtain quantitative information about the dataset, for example the area of an

isosurface, or the volume contained between two of them. This information is difficult

to obtain directly from a voxel representation.
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Mostof the usefulaspectsof volumerenderingcanbesimulatedby polygonal
"surfacesonsurfaces"in whichonescalarfunction formsthe surface(typicallya
cutting plane)andotherscalarfunctionsare representedby coloror transparency. In
this manner,someofthe functionalityof toolslike the PIXARComputer"cubetool"can
besimulatedand extendedby meansof polygon-renderinghardwareaugmentedby
efficientsortingand sweepingalgorithms.

Theideasexpressedherecanalsobeusedin tlme-dependentproblemsby usingthe
methodsat eachtimestepin an animation. Moreover,the ideaof sweeping
lower-dimensionalmanifoldsthroughan N-dimensionaldatabaseis a straightforward
extensionoftheseideas.

A softwareprototypecalledISOLEVimplementstheseideas,and somecolorplates
of screenimagesproducedby this programareappended.This programis written in C
and runs underUNIXonSiliconGraphicsworkstations. COpiesof thesoftwarecanbe
obtainedby writing to the NASAppliedResearchOfficeat the addresson the coverof
this report.

2. Approach

We consider the visualization of multi-dimensional datasets using graphical

vectors and polygons. In particular we consider systems based on discretizations of

3-D continua such as finite-element and finlte-difference CFD. These methods can also

be used on voxel data which has been sampled at grid points, for example by measuring

the photometric density.

2.1 Grid Planes

The C-plane program [LEVI88] and its descendant D-plane [TRIS88] are special

purpose programs which act on CFD datasets in the PIAYI'3D format [PLOT89]. There

the data set is the image in physical space of a regular lattice in computational space.

These program sweep through the grid indices in a specified order, and visualize the

data one computational plane at a time. They do no interpolation of the data beyond the

implicit bflinear interpolation used by Gouraud shading hardware. This program, in

constrast, is based fundamentally on interpolation of the data.
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2.2 Isoscalar surfaces

An isoscalar surface, or tsosurface for short, is a surface in space defined by a

scalar function F of space. That is, one constructs the surface

F(r) = [k

The function F is ascalarfunction of the spatial position r which defines the surface

and the value _ Is the isovalue or threshhold ). The function F is operated upon by a

geometric transfer function which represents the numerical values of the function F as

graphical constructs in space. Other transfer functions such as color or opacity may act on

different scalar functions.

2.3 Surface-on-Surface

A "surface on surface" contour plot is one where a surface defined by a geometric

transfer function, say F(t}, is colored or textured with information defined another

function, say G(r}. [This is done non-interactively in the routine con4x4 in the ARCGraph

Mesh Library [ARCG88], for example. These plots are hard to interpret without additional

depth cueing or lighting models.

For example, one may constract the sonic surface (Mach Number = 1) and color it by

static pressure to obtain a visualization of the pressures on a shock surface. However, since

there is both spatial and shading information in the plot, the visualization is difficult to

interpret, since color informationis used to convey information about the scalar field, and

about the geometry of the isoscalar surface, by means of lighting and shading. One can use

only fully saturated hues for the scalar and reserve saturation and value for the lighting

model, but this limits the types of color maps that can be used.

2.4 Cutting Plane

If the function which defines the isosurface is a simple one, then we have more hope of

disentangling geometric information from scalar field information. This is precisely the

case with the "cutting-plane" algorithm developed here. In this case, one uses a simple

linear function
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F(r) = (r-r 0) • n =

where n is a normal to a plane and r0 is a reference point. This "cutting plane"

provides much of the same information which is desired from volume visualization, but

economizes on the number of graphical primitives which need to be rendered. A color

transfer function is used on a second scalar variable, and results in what looks like a

section of a continuously colored volume. A third transfer function can be added for

opacity. Other simple functions, such as computational grid surfaces, spheres or cylinders,

or distance from an aerodynamic surface, can also be used as geometric transfer functions.

3. Implementation

The method of this paper comprises three basic concepts. First, it is assumed that one

has at hand a discretization of space into cells of similar topology. Second, a set of

'"oitmaps" or lookup tables corresponding to these cell shapes and the sign of the value of

the vertex is constructed. The prototype for this is the "marching cubes" algorithm

[WYVI86, LORE87]. Finally, one must have a way of arranging the individual cells so that

they may be rendered efficiently into vectors and polygons. The output of this process is a

set of triangles which can then be lit and shaded. Extensive use has been made of David

Tristram's Panel Library [TRIS89], a public domain package of software buttons, sliders,

and other types of actuators which can be incorporated into a program to give it interactive

control. For example, the viewport parameters, the isoscalar levels, and the level surface

orientation are all controlled by sliders.

3.1 Discretization

The discretization of space generally falls into two types. By far the most common is

discretization into topological cubes, and it is this discretization which we use here. A

topological cube Is a figure containing 8 vertices, 12 linear edges, and 6 (generally

nonplanar) faces arranged in a cube [Fig. 1] This topological class includes the exact cubes

typical of volume renderings as well as rectilinear parallelpipeds and the more general

computational hexahedra obtained from curvilinear coordinates such as those in the

PLOI'3D program [PL(YI'89]. For curvflinear grids composed of these ceUs one can order the

cells by three coordinate indices I,J,K which represent the position of the cells in

computational space.
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In the presentimplementation,a separatesetof surfacesare constructed in a

representation of computational space (IJK-space), since this provides an overall look at

the solution that can be of use to a numerical analyst. In particular, one can have an

overview of the scalar fields at all length scales at once.

The second type of discretization to which these ideas apply is the tesselation of space

into tetrahedral cells with data points at their vertices. The most common method of

tesselation is the generalization of Delaunay triangulation to three dimensions. The

tetrahedral elements of this tesselation have the property that the circumspheres of the

cells contain no other vertices. Bookkeeping is somewhat more complicated for such

triangulations, because of their more complicated connectivity. However, since the sweeps

to be implemented require a resorting of cells, this is not a great disadvantage.

Triangulation methods can be used with completely unstructured datasets.

3.2 Marching Cubes Bitmaps

Having discretized the flowfield into cells, we now operate on each cell independently,

using tables patterned after [LORE87] which assign a unique isosurface topology to each cell

depending upon whether the scalar value being contoured is greater than or less than the

value at the cell vertices. For the 8-vertex hexahedral cell typical of PLOT3D, a

representation of this topology can be preloaded into an 8-bit table with 256 entries. The

corresponding 4-bit table for tetrahedra has 16 entries.

The present program is based on a program written by Martin Fouts [personal

communication] which implemented the marching cubes algorithm on a rectangular cube.

Since the information contained in the table is topological, the same set of maps will do for

the more general hexahedron. Fouts's original code stored two separate datasets at each

bitmap, a pattern and a permutation of indices that rotates the pattern to the appropriate

location. In the present implementation, all 256 patterns are written out explicitly. This

makes checking easier, and also allows one to build in the correct orientation of the

triangles. That is, a normal vector computed from each triangle by the right-hand rule

always points in the direction of increasing scalar value.

The interpolation implemented in the marching cubes algorithm is linear on the
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edgesof thehexahedron.Thismakesit exactfor cubic cells. It falls somewhere between

linear and trilinear interpolation for hexahedra, consisting of linear interpolation on the

edges. For tetrahedra, multilinear interpolation reduces to linear, since there are only 4

vertices.

The original marching cubes algorithm us two-valued, binary logic at each vertex.

Thus the tables have 16 entries for tetrahedra, 256 for hexahedra. A variant for which the

value of "zero within tolerance" has also been tried for tetrahedrons (having 3**4 or 81

patterns), and yields better results in some cases, at the cost of more complication. In this

work, the two-valued system is used, since it has a much more convenient hardware

implementation. For a hexahedron, there are 3**8 or 6561 pattems, so this approach was

not tried. A more fruitful direction would be to use tolerance checking to trigger an

adaptive subdivision of the surface for cubes which lie very to the isosurface.

The subroutines which perform the table lookup take as input a single cell, and output

triangles. In order to conserve memory, it was decided not to keep lists of triangles, but to

render them directly as soon as they are produced. If more memory or triangular mesh

primitives are available, one should consider putting the triangles into a list and rendering

them all at once.

3.3 Sorting and Sweeping

The method described thus far looks at each ceU individually and produces a number

of polygons depending upon the relative value of the field at the cell vertices compared with

the isovalue. The cells are intersected with the desired cutting plane. For each 3-D element

in the set, a planar polygon is produced whose vertices carry function values produced by

interpolation of the data along the edges of the cell. Transfer functions can be invoked to

convert the data value(s) into color, opacity, texture, etc.

For a cutting plane, we expect that for an NxNxN grid, only about NxN cells will

actually fall on the cutting plane and be in an "active set" for rendering. Thus a significant

savings in rendering the cells can be achieved if we do not need to examine all cells each

time we move the isolevel. We are naturally led to the concept of an active set of cells, which

can be updated during a sweep through the values of the isoscalar. This is easiest to see in

the case of a cutting plane. Given a direction of sweep, once a cell is below the plane, it need

never be looked at again.
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In order to sweep through the database efficiently, we need to maintain an active set of

points. In order to construct the active set it is necessary to preorder the points initially.

Assume that the sweep of the data is conducted in order of increasing value of the level

surface. A cell will be added to the active set from the MIN list as the isovalue passes its

value. A cell will be deleted from the active set once its maximum value has been exceeded.

Thus, we exclude all values from the active set which are either completely above or

completely below the level surface.

The active set must support the operations of addition of cells and subtraction of cells.

The subtractions can take place from any cell in the list. Therefore, it is necessary either to

use a linked-list data structure or to keep track of each cell's current position in the active

set list. We have chosen the linked-list structure in our implementation.

The foregoing suggests that the cell data structure should contain at least the

following information. For the moment we assume that the rest of the data values can be

obtained from the existing grid structure by means of the indices I,J,K. In the case of

unstructured grids, one keep some other pointer into the list of data values, probably a

single index.

struct Cell{

float Minval /* Minimum scalar function value at

float Maxval /* Maximum scalar function value at

int I,J,K /* indices into curvilinear grid

Cell* next_Cell}

vertex */

vertex */

*/

These cells are presorted into two simple arrays called MIN and MAX. If we begin

below the minimum level value, the active set is empty. Imagine that we are going to sweep

in the direction of increasing isovalue. Then we incrementally add cells and delete cells

from the active set in a loop.
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procedure sweep_up (bottom__level, top_level,

level = bottom

initialize active set

while (level < top_level)

increment level (level, delta)

endwhile

end sweep_up

delta)

The active set is maintained by first adding cells to the active set (at the tail of the

linked list structure) from the MIN list, which has already been preordered. The we filter

out those cells whose maximum value lie below the threshhold and which never need to be

examined again. Thus the active set is maintained by

procedure increment level(level, delta)

level = level + delta

add cells from MIN list

delete_active_cells_by_max(level)

render active set

end increment level

and

procedure delete_active_cells_by_max(level)

for(all cells in active set){

if(cell->max < level) delete cell

)

end delete_active_cells__by_max

The process to be followed is illustrated in Figures 2 and 3. The cells have been

ordered by their min and max values. As the level is increased, the threshold encounters

new cells from the MIN list. These are added onto the taft of the active set, with pointers

appropriately updated. Then, the cell maxima in the active set are checked against the

current value of the threshhold. Those cells whose maxima are below the threshhold are

then deleted from the active set by resetting the links and freeing the memory allotted. The
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deletion operation can be performed in one pass over the active set.

Naturally, one can reverse the process and sweep down from the top. In that case, the

roles of the MIN and MAX lists and values are reversed. Only the MIN list is required if the

dataset is swept in only one direction.

Since the list of cells to be sorted is very large, we need an efficient method of sorting

the cells and maintaining an active list of cells. The present method uses a variant of the

HEAPSORT algorithm [PRES88 based on KNUT73] which is O(N log N). The QUICKSORT

algorithm may be faster on large datasets but has not been implemented. O{N**2) sorts are

out of the question for these large datasets!

The sorting and sweeping described here bears a (deliberate) analogy with the methods

currently in use to do scan-line rendering of polygons in hardware. There the problem is to

keep an active set of polygons which is rendered if it crosses a scanline. In either case, one

keeps trackof a minimum and maximum value for the polygons before which and after

which, the polygon is not intersected by the scanline. More details about such algorithms,

and clues to their implementation in hardware, can be found in [FOLE82]. For a more

theoretical treatment of sorts and sweeps in computational geometry, see [PREP85] and

[EDEL87].

4. Additional Visualizations

Three color plates of these visualizations are included at the end of this paper.

Besides the visualizations of isosurfaces and cutting planes, some additional

visualizations are possible using these techniques. This is not an exhaustive list, as most

successful visualizations involve a combination of techniques. Since we are creating

vectors and polygons, one can combine these elements, together with lighting, shading,

stereo, and motion to produce a final product.
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4.1 Multiple Isosurfaces.

Plate 1 illustrates a typical screen view of the ISOLEV program showing an

iso-pressure surface (isobar) for the blunt fin dataset generated by Hung and Buning

[HUNG84]. Since the isosurfaces are produced as geometric objects, one can compose them

either with isosurfaces corresponding to different values of the constant _, or with

isosurfaces of a different function. Generally, one seeks to relate the behavior of two

variables through the representation by their isosurfaces.

4.2 Multiple Cutting Planes

Plate 2 shows a level surface of the same pressure data for a blunt fin. The cutting

plane is at an arbitrary angle, and a color transfer function represents the pressure. If we

define a level surface by a planar function, we can use both color and transparency to

encode scalar variables. The use of transparency makes it possfle to show multiple cutting

planes in the same image. This has been done in some examples with DPLANE to good

advantage. Typically, one uses a transparency function to eliminate "uninteresting" parts

of the flowfield (like the freestream) from view. Unfortunately, the present generation of

firmware does not permit smooth interpolation of opacity (analog of Gouraud shading ) for

opacity.

4.3 Vector Fields

Besides scalar fields, there are also vector and tensor fields which occur in nature and

which are simulated or measured, and the visualization of these fields can be aided by

variations on the techniques described above. In particular, one realizes that any

dependent variable or set of variables defined at the vertices of the discretization cells can

be linearly interpolated to the vertices of the polygonal isosurfaces or level surfaces. Thus

vector- or tensor-valued functions have a unique interpolant obtained by interpolating

component by component.

4.3.1 Vector plots.

The simplest plot is the traditional 3-D vector plot with the magnitude of the

graphical vector being proportional to the magnitude of the vector field. Thus one can

produce sets of 3-D vectors which emanate from a chosen cutting plane or surface.
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Alternatively, one can visualize only the vector directions in a manner analogous to the

tuft grids used in experimental flow visualization. However, the array of initial points is

not a regular grid but consists of the irregular array of triangles which forms the cutting

plane. One could obtain values at a regular grid by a second set of interpolations, of course.

4.3.2 Deformation surfaces.

A related method of visualizing vector fields is to produce a vector emanating from

every vertex on the cutting plane, and then create polygons from the endpoints of the

vectors. If the vector field under study represents a displacement field, then the surface so

produced is a deformation surface due to the displacement. One can scale this displacement

continuously from zero in order to add motion cues. A deformation surface corresponding

to velocity is shown in Plate 3. One also has the transfer functions of color and opacity at

one's disposal in handling these vectors. A common practice in CFD visualizations is to

color velocity vectors by pressure, as is done here, or by Mach number.

4.3.3 Tensor fields on level surfaces.

A tensor field can usefully be described as mapping from vectors to vectors. Thus,

given one set of vectors, the normals to a given cutting plane, one obtaines a second set of

vectors by contracting the normals with a tensor field. One can then sdisplay the resulting

vector field using the methods just described. By using multiple sets of planes, or using one

plane interactively, one gain some impression of a few components of a tensor field at a

time.

5. Future directions

The methods described above use only the simplest forms of interpolants to discrete

data. These forms will probably predominate in the near future, ff only because most

simulations only solve the underlying differential equations to this order of accuracy.

However, we can describe some probable extensions to these methods as follows.

5.1 Higher Order Interpolants

The natural generalization of the concepts derived here is to higher order

interpolants which can exhibit higher degrees of parametric or geometric continuity.
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Continuity conditionshavebeenworkedout for one-dimensionalspacecurvesand to a
lesserextentfor two-dlmensionalsurfaces.Thestudy of 3-Dvolumeinterpolantsis still at
an earlystage. Onewouldexpectthe isosurfacesofhigherorderinterpolantsto inherent
the continuitypropertiesof its basis,but this hasnot beenshown. Asfar asmethodsfor
determiningtheseinterpolants,onemust generallysolvefor rootsof algebraicequations
of the orderof the interpolant(i.e.solvesimultaneouscubic equationsfor intersection
points of levelsurfaceswith cubic interpolants)or usesomesort of iterativeor adaptive
sheme. It mightbepossibleto usea considerablymoreelaboratetablelookupscheme
which involvesa much largerlist of possibilities.Sortingis nomoredifficult in principle,
becausehigherordersplinefunctions arecontainedwithin the convexhull of their control
points in the Bezierrepresentation.

5.2 Adaptive Subdivision

We have already mentioned before that, depending upon the proximity of the vertices

to the isosurface, some inaccuracies in the surface may result. These can usually be

improved by subdividing the ceils. At present, only an overall subdivision (i.e. for every

cell) is implemented, but one could include a test for each cell which would determine under

what conditions the cell should be subdivided. In principle, this could included

information about the projected image as weU as the interpolants.

5.3 Vectorization and Parallelization

The sorting routines introduced earlier presuppose serial processing of cells. It would

be possible to use hardware parallelization on some of these processes, but this has not

been investigated here.

6. Conclusions

A computer program has been written which adds to the repertoire of visualizations

that can be created with the aid of lookup tables. Visualizations include isoscalar surfaces,

cutting planes, and vector deformation surfaces. Clearly, the techniques is a fruitful source

of ideas for visualizing continous fields generated as interpolants of spatial data.
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9. Figure Captions

Figure 1. Computational Hexahedron or topological cube. This figure is defined by 8
vertices connected by 12 edges. The faces are not necessarily planar, but are
doubly ruled surfaces of zero Gaussian Curvature (see for example [DAVI85]).

Figure 2. Cells are projected onto a llne in the normal direction. They can thus be
represented for the purposes of sorting by their minima and maximum
projection on the normal line.

_3. Segment lists. In this figure, the process of maintaing the active set of cells is
summarized. The threshhold is represented by the horizontal level line which is
rising through the set of cells. As the level rises, both the MIN and MAX lists are
incremented. The active set is the difference between the MIN and MAX lists.
Active elements are here indicated by thicckened lines.

Plate I. Pressure Isosurface for the blunt fin dataset. Two windows show the isosurface
in both physical space and computational space.

Plate 2. Level Surface of the blunt fin data set colored by pressure.

Plate 3. A level surface in the streamwise direction has been colored by pressure and
deformed by the velocity field. At the fin and plate, the velocity, and therefore
the deformation, vanishes.
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